
Cues for Scent Intensification in Debugging

Alexandre Perez
Department of Informatics Engineering

Faculty of Engineering, University of Porto
Porto, Portugal

alexandre.perez@fe.up.pt

Rui Abreu
Department of Informatics Engineering

Faculty of Engineering, University of Porto
Porto, Portugal

rui@computer.org

Abstract—Information foraging is a theory to understand how
people search for information. In this theory, information scent
is the perceived likelihood by the “predator” that a cue will
lead to a “prey”. The better the cues, the better the information
scent. In automatic debugging, it is the perceived likelihood
that the diagnostic report leads to the cause of failures. In this
paper, we detail a visualization, offered by the GZOLTAR toolset,
that has the potential to provide better cues. With better we
mean providing more information that leads to the fault than,
e.g., the source code and code coverage information. The toolset
provides a graphical display of the diagnostic reports yielded by
well-known debugging techniques. From an information foraging
point of view, we argue that the visualization is of added value
while debugging. Finally, we report a user study to confirm that
GZOLTAR’s visualization provides better cues for pinpointing
faults.

Keywords—Fault localization, information foraging, visualiza-
tions, user experience.

I. INTRODUCTION

Several coverage-based techniques that aid developers in
finding software faults by computing a ranked list of possible
candidates (e.g., source code statements) have been proposed
in the past [1], [2], [3], [4]1. Although these techniques have
been shown to work well in practice (which actually should
be read as: in the controlled environments used to assess their
diagnostic accuracy), successful stories in transferring this
technology to industry are yet to come.

One of the main barriers for the lack of world-wide
adoption is certainly because automatic debugging researchers
have not considered how developers debug in practice. Apart
from just a few works, such as Whyline [5], Hipikat [6], and
Mylyn2, researchers have (strongly) assumed that (i) devel-
opers traverse the ranked list of suspicious statements; and
(ii) perfect bug understanding. In fact, a recent empirical study
has demonstrated that the assumptions just outlined do not
hold in practice [7]. Another study, in an industrial setting,
has shown interesting results [1], [8]: a candidate ranking that
was considered to be close-to-perfect (given the metrics used
to assess efficiency), was actually deemed by developers as not
very useful. We believe that this happens because developers
have a mental model of the software behavior and structure in
their heads, and will most likely come up with an hypothesis
that explain the observed failures. Therefore, the automatic

1Other techniques exist, but they are not the focus of the paper. However,
the contributions of this paper may generalize to other techniques just as well.

2http://www.eclipse.org/mylyn/

technique is often used as an oracle to either confirm or refute
the hypothesis.

These studies make it clear that state-of-the-art software
fault localization techniques do not take into account how
developers seek information in the source code. And therefore,
despite advancing the field, these techniques have experienced
a strong resistance from the industry. In this paper, instead of
simply displaying the ranking in plain text, we propose to use a
graphical interface integrated in the development environment.
Exploiting the fact that the code is inherently hierarchical, we
discuss the use of a Sunburst-like visualization that depicts
the code structure to developers, previously proposed in [9].
We enhanced the visualization to also display the suspicious-
ness of a software component of being faulty, according to
the output of fault localization techniques. Then, we use an
information foraging theory to discuss the added value of such
visualization. Information foraging is a theory to explain and
predict how people use environmental information to achieve
their goals. In this paper, the goal is to find software defects,
whereas the environment information is the yielded visual
diagnostic report, the features provided by the IDE (such as
opening editor in a given line), and the source code of the
software under analysis. The main contributions of this paper
are

• We discuss an hierarchical graphical representation of the
program, displaying not only its structure, but also the
suspiciousness of each component being faulty;

• We offer the graphical representation in the GZOLTAR
toolset, an Eclipse plugin for automating the testing and
debugging phases;

• We propose and discuss an information foraging theory
to motivate the choice for our graphical representation of
the software;

• We perform an user study to confirm that the visualization
brings extra cues while debugging.

Information foraging theories in software engineering have
been considered before, including to explain how developers
debug software [10], [11], but not the usefulness of visual-
izations in this domain. Also, while the use of hierarchical
visualizations such as Sunburst have been proposed in [9], an
explanation and discussion on their added value is still needed.
In this paper, we map debugging concepts to an information
foraging theory to provide an insight on the benefit of using
visualizations to locate faults.

II. FAULT LOCALIZATION

Spectrum-based Fault Localization (SFL) is amongst the
most effective statistical techniques for software fault local-
ization [1]. It exploits information from program executions to
compute a list of suspicious software components (statements
in the context of this paper), sorted by their suspiciousness of
being faulty. In SFL, the following is given:

• A set C = {c1, c2, · · · , cM} of M components.
• A set R = {r1, r2, · · · , rN} of N program executions.

Execution outcomes are gathered in a N -length error
vector e, where ei = 1 if execution ri fails, and 0 if ri
passes. The criteria for determining if an execution has
passed or failed can be from a variety of different sources,
namely test case results and program assertions, among
others.

• A N×M coverage matrix A, where Aij = 1 if execution
ri involves component cj , and 0 otherwise. This matrix
is also called the hit-spectra matrix.

The fault localization consists in identifying what columns
of the coverage matrix A resemble the error vector e the
most. For that, several different similarity coefficients can be
used [12]. One of the most effective is the Ochiai coeffi-
cient [13], used in the molecular biology domain:

sO(j) =
n11(j)√

(n11(j) + n01(j))× (n11(j) + n10(j))
(1)

where npq(j) is the number of runs in which the component
j has been touched during execution (p = 1) or not touched
during execution (p = 0), and where the runs failed (q = 1)
or passed (q = 0). For instance, n11(j) counts the number
of times component j has been involved in failed executions,
whereas n10(j) counts the number of times component j has
been involved in passed executions. Formally, npq(j) is defined
as

npq(j) = |{i | Aij = p ∧ ei = q}| (2)

The computed similarity coefficients are then used to rank
system components according to their suspiciousness of being
faulty. A list of components, sorted by their similarity coeffi-
cient, is presented to the user, helping prioritize the inspection
of software components to pinpoint the root cause of failures.

SFL can be used with hit-spectra of several different soft-
ware component granularities. However, it is most commonly
used at the statement level and at the basic block level. Using
coarser granularities would be difficult for programmers to
investigate if a given fault hypothesis generated by SFL was,
in fact, faulty. Throughout this work, we use statement level as
the component granularity for the fault localization diagnosis
report.

III. THE SUNBURST VISUALIZATION

The reason behind offering a visualization for the diagnos-
tic reports is mainly because it is extremely difficult to interpret
a ranked list of components and associated suspiciousness in
plain text. In fact, just using the plain text, we deliberately
discard important information such as the structure of the
software system. As software is inherently hierarchical, a
visualization leveraging such hierarchical information has been
implemented. Furthermore, both to facilitate adoption and also

let the developer use IDE features, we offer the visualization
within our own GZOLTAR Eclipse Plug-in [14] for automatic
testing and debugging3.

We have selected the sunburst visualization to depict the
program, as it allows the representation of hierarchical de-
pendencies between components of the system. Each ring
denotes a hierarchical level (or granularity) of the source
code. See Figure 1 for a more intuitive description. The
color of each component represents its failure suspiciousness,
ranging from green - no fault suspiciousness - to red - high
fault suspiciousness. This fault likelihood is computed by the
diagnostic algorithm outlined in the previous section.

1
2

3
4

56
7

project.packageroot.package.file.class.method.line
1

2

3

4

5

6

7

Fig. 1. Sunburst Hierarchical Levels.

Navigating through the visualization is straightforward.
Developers can expand components of interest by simply
left-clicking with the mouse in the desired components.
Such action triggers an event in the graphical engine so that
the child components are also shown. As an example, if
the developer expands a component representing a class, the
visualization will render the methods within that class.

Zooming in/out and panning the visualization to analyze in
more detail a specific part or region of the software system is
also possible. This feature is particularly interesting for very
large projects as it may be difficult to properly visualize the
outermost components (i.e., statements).

Another feature to improve understandability is the root
change functionality. It allows any component to be the root
of the visualization. The other sibling components, as well
as parent components will be automatically hidden, and thus
removed from the visualization. This feature is used, for
example, when the developer has already pinpointed the cause
of the failure to a given component and wants to analyze that
component, and its dependencies, only. To perform this action,
the developer simply right-clicks with the mouse in the
root-to-be component.

If all the tests pass (i.e., there were no observed failures),
the underlying fault localization technique yields an empty

3GZOLTAR is available online. To install the GZOLTAR toolset, users need
to request a license at http://www.gzoltar.com/

diagnostic report. As such, our visualization will show all
components in the system as green. It is worth noting that
this does not mean that the system under test is bug-free, but
rather that no failure was observed.

IV. INFORMATION FORAGING THEORY

Peter Pirolli, one of the pioneers of the theory, defines
information foraging as a theory to both “explain and predict
how people will best shape themselves for their information en-
vironments and how information environments can be shaped
for people” [15]. Sjoberg et al. [16] suggests that a theory is
best used to explain (at least one) of the following questions:
what is, why, forecast future events, and guiding how to do
something. As a matter of fact, Information Foraging Theory
is used to answer all these four questions.

To be able to use information foraging theory in the context
of automatically produced diagnostic reports, we first need
to map the theory constructs into this context. Following
the information foraging theory proposed by Lawrence et
al. [10], in this paper we map the information foraging theory
constructs as follows:

Predator is the person debugging the program;
Prey is what the programmer seeks to know to pinpoint the

bug;
Information patches are localities in the source code that

may contain the fault;
Proximal cues are the runtime behaviors that suggest scent

relative to the prey;
Information scent is the predator interpretation of the diag-

nostic report;
Topology is the collection of paths through the source code

and diagnostic report through which the programmer can
navigate. It also includes IDE features that help navigating
the code.

The topology is a graph representing elements of the source
code (e.g., classes, methods) and the diagnostic report with
navigable links between the elements. As said before, we
use the Sunburst visualization to represent the topology of
the system. A Sunburst visualization is a radial space-filling
visualization technique for displaying tree like structures. This
is adequate to visualize software, as it can be regarded as a
tree structure.

The navigable links between the elements allow the pro-
grammer to traverse the connection at the cost of just one
click. This is important as information foraging draws from the
theory that the developer’s next move is one that maximizes
the information leading to the prey.

Information foraging theory assumes that the developer’s
choices are an attempt to maximize the information gain per
interaction’s cost. As in [11], this can be characterized as

choice = max(G/C)

where G is the information gain and C is the cost of the
interaction (including both the visualization and the IDE
features). Since the G and C values are not known to the
developer a priori, his decisions will be based on the expected
gain and cost.

When looking for the root cause, the developer relies on
the cues to decide which place to inspect next. Meaning that
the developer uses those cues to estimate trade-off between the
cost incurred and value to be gained. In an attempt to take the
best decision, the developer will favor links whose cues will
lead him to the location of the fault.

In information foraging, information scent is the perceived
likelihood by the developer that a cue will potentially lead
to the fault. Better cues are therefore more likely to lead
to better information scent, hence reducing the cost incurred
while maximizing the value gained. By analyzing the Sunburst
visualization proposed in the previous chapter in regard to
information foraging we may conclude that its visualization of
the system’s topology and its interaction features can indeed
reduce the cost of navigation through the various system
components (be it packages, classes, methods, even statements)
and thus C is reduced. The color coding of each component,
which is obtained from the fault localization ranking, can be
regarded as a proximal cue, guiding the developer towards
likely faulty regions of the source code and at the same
time, notifying the developer about regions that should not
be explored (where, e.g., faulty executions have not touched).
Hence, a better information scent is conveyed to the developer,
increasing the information gain.

V. USER STUDY

We carried out a user study to validate the usefulness of the
visualization discussed in this paper. While some of the results
of this study were previously detailed in [9], in this paper
we investigate the use of information foraging to predict how
developers navigate through the diagnostic report and source
code when looking for a fault. This section details the user
study and draws conclusions from the feedback given by the
participants regarding the toolset offering the visualization.

A. Participants

We carried out a user study with 40 students of the
Master in Informatics and Computing Engineering program
at University of Porto. As already said, all participants were
experienced developers in Java (more than 5 years; mostly as
freelancers) and also used regularly the Eclipse IDE to develop
and JUnit as the testing tool.

Participants were asked to locate and fix a fault in a
software program. They have been split into two groups, each
comprised of 20 subjects:

Control group This group was supposed to find and fix the
fault using only the default IDE features provided by
Eclipse. Among many other features, breakpoints and
JUnit tests could be used.

Experimental group The experimental group had access to
the GZOLTAR toolset, along with the sunburst visualiza-
tion.

The participants had no previous experience with the
GZOLTAR toolset. Before starting the user study, the main
features of the toolset were briefly explained. We decided not
to give a very detailed introduction in order to assess how
intuitive the visualization is.

B. Subject Program

To evaluate the efficiency of our toolset and its visual-
ization, we used the XStream4 project as the subject for our
user study. XStream is a library that (de)serializes Java objects
into XML. None of the users were familiar with the XStream’s
source code before the user study. XStream version 1.4.4 has
17389 lines of code, 306 classes and 22 packages. The program
also provides 1418 JUnit test cases.

We have injected a logic operator fault in the program:
a not equals operator (“!=”) was changed to an equals
operator (“==”) in line 455 of the AnnotationMapper class
from the com.thoughtworks.xstream.mapper pack-
age. This fault allows the code to be compiled (a requirement
to use GZOLTAR, since SFL performs a dynamic analysis),
and leads to unexpected behavior. Participants were provided
with all test cases, and a timeout of 30 minutes was set to find
and fix the fault.

Developers were observed remotely while debugging to be
able to better understand their movements and whether or not
the visualization is of added value. We have also logged the
participants’ events and changes to the source code.

C. Results

We observed that 100% of the participants in the experi-
mental group were able to successfully find and fix the injected
fault within the time limit. On average, participants required,
on average, µ = 7.9 minutes to fully accomplish the task
of finding and fixing the fault (with a standard deviation of
σ = 4.9 minutes and a median time of t̄ = 7.1 minutes).

Regarding the control group, that performed the task using
the more traditional methods, the results were rather different
from those participants using the toolset. Only 35% of partic-
ipants found and fixed the fault. The remaining 65% have not
managed to find the fault within the time time limit. They
were actually not even close to being able to pinpoint the
root cause of observed failures, meaning that the information
scent and cues provided by the source code and test cases was
not as good as the one of the visualization. Feedback is that
they would need more time to even comprehend the source
code. For those that did not find the fault, were assigned as
taking the maximum time (30 minutes). With this into account,
the average time to perform the task was µ = 23.4 minutes
(σ = 9.8 and t̄ = 30). Therefore, this confirms that the
sunburst visualization offered by GZOLTAR is of great value
when doing testing and debugging (in particular, if the testing
team is different from the development team), speeding up the
debugging task.

These results suggest that the cues provided by the visu-
alization increase the information scent of the developers, this
way leading to the prey (faulty code) quickly. Our findings
are in agreement with the ones reported in [10]: participants’
pursuits of scent were triggered mostly in the source code.
Moreover, our results suggest that the participants also resorted
to the visualization to pursuit scent.

4XStream homepage http://xstream.codehaus.org/, 2013.

D. Feedback

In general, the GZOLTAR toolset had a good acceptance
amongst the participants. The concepts underlying the toolset
were well comprehended. The participants’ reviews, added to
the good results of the study, where the majority was able
to reach the main goal, reveal that the GZOLTAR toolset is
effective.

Participants were invited to give their opinions and sugges-
tions for further improvements. The feedback obtained was re-
garded as very positive. Participants mentioned that the toolset
was both efficient and effective. They also gave suggestions to
improve in future releases, such as to improve it to work with
other programming languages. With this experiment we were
able to confirm the usefulness of this toolset. The scenario
of this experiment was rather demanding, because participant
had no previous contact with the toolset and XStream before.
Nevertheless, the results were very promising, and participants
showed to be pleased with the use of this toolset.

In this experiment, as discussed in [9], other visualizations
were also tested. Also implemented in the toolset are the
Vertical Partition and the Bubble Hierarchy visualizations. All
participants from the experimental group interacted with the
three visualizations, but quickly gravitated towards Sunburst
to complete the debugging task. After the fact, participants
stated that Sunburst was the most intuitive visualization. From
an information foraging point of view, we argue that due to
this intuitiveness, Sunburst provides better cues than the other
visualizations and, ultimately, increases the information gained
about the system being diagnosed.

It is worth noting that we have not explicitly asked which
features of the toolset they used and/or found useful while
searching the faulty statement because we monitored the
fault localization process. Since such monitoring allowed us
to verify the procedures/steps taken by the participants, we
concluded that the tool was heavily relied upon. In fact,
participants gave us feedback such as

“Without the visualization, it would be practically
impossible to locate the fault.”

“The visualization helped me better understand the
components’ execution patterns.”

“The visualization and code editor interaction was
fundamental to quickly find the fault.”

Therefore, we conclude that the visualization of the debugging
report gives better cues to the developers, thus improving the
scent, during the the debugging problem.

E. Threats to Validity

Empirical experiments have threats to the validity of their
results. In the following we discuss threats to the validity of
the empirical evaluation reported in this paper.

The external validity of the results obtained in the user
study can be questioned given the fact that we have used a
medium-sized, real program. It may be the case that the soft-
ware program used has unusual characteristics that would not
generalize to other programs. In order to strengthen the validity
of our findings, we have applied the toolset to other, real world

experiments (as reported in, e.g., [17]), demonstrating that our
toolset can be of great value during testing and debugging.

Our results may not generalize because of the fact that we
have injected only one fault. The injected fault may again not
generalize to all sorts of problems. We, however, think that
it is an interesting fault because it is not easy to pinpoint.
Yet another external validity is the fact that participants are
all computer science students. Moreover, we have chosen a
system written in Java because GZOLTAR only handles Java
source code. Therefore, we cannot generalize the results to
other programming languages.

The internal validity of the findings from the user study
can be questioned given that fact that we have only briefly
explained the toolset. Hence, some features provided by the
tool may not have been completely understood and therefore
misused during the experiment. Furthermore, the time limit is
somewhat artificial and may put participants under pressure.

VI. RELATED WORK

Automating the debugging process has been a hot topic in
the last couple of years (e.g. [1], [18], [19], [20], [21], [22],
[23]). However, despite the large body of work, most Integrated
Development Environment (IDE)s still either offer limited or
only manual debugging utilities, such as breakpoints. Amongst
the most sophisticated IDEs is the JIVE toolset [24], which
provides a representation of the execution history. The lack
of debugging features in IDEs is particularly noticeable when
considering state-of-the-art fault localization techniques.

Currently, one of the most well known automatic de-
bugging toolset is Tarantula [25]. This tool relies on code
coverage of multiple test executions - like the underlying
technique considered in this paper. Its visualization resembles
an overview of the entire code, and the color of each statement
represents its failure probability. While the concepts intrinsic
to Tarantula may be applied to many languages, this tool
only works with C projects. Tarantula does not integrate with
(J)Unit tests and is not integrated into an IDE.

Zoltar [26] is another available automatic debugging tool.
Like Tarantula, it also relies on code coverage of multiple
test executions and is a standalone tool that does not inte-
grate (J)Unit tests. The results processed by this tool may
be visualized using the command line interface to obtain an
ordered list of statements, where the statements that are most
likely to contain a fault are ranked first. It is also possible to
use xZoltar [26] to visualize the source code with the most
suspicious lines highlighted in red.

Vida [27] is an Eclipse plug-in based in the Tarantula
toolset. It suggests places where breakpoints should be placed,
considering the fault suspiciousness of each statement. The
visualization offered represents the program, and it resembles
the Tarantula standalone tool, with no interactive features.

EzUnit4 [28] is also an Eclipse plug-in that bases its execu-
tion on JUnit tests, and uses statistical analysis to calculate the
failure probability of each tested method. It uses a combination
of multiple weighted statistical metrics to create a failure
ranking, presented as a view in Eclipse. The background color
of each line of that ranking list ranges from green to red,
according to its failure probability.

Finally, there are other tools that perform automatic de-
bugging using other methodologies, such as the Delta De-
bugging [29], predicate-based, aspect-based and model-based
debugging tools. Delta debugging integrates with Eclipse as a
plug-in, and uses an algorithm that analyses software changes
(input and code) to localize the faults. Other techniques for au-
tomatic debugging are as follows: as those based on predicates
such as Cooperative Bug Isolation (CBI) [30] and Sober [3],
based in aspects such as Bugdel [31] and based in models [32].
However, an off-the-shelf toolset offering these techniques is
not publicly available. None of these concepts and tools offer
an easy to use/understand visualization of the system, with the
fault likelihood of each component, and integrated into an IDE.

As for information foraging theory, despite its success in
the domain of Web foraging, only a few researchers have
applied information foraging theory to software engineering
problems. One recent study of how developers navigate source
code used information foraging theory to interpret results from
an empirically based model of program comprehension [33].
A second formative study mentioned that developers appear
to look for documentation in a manner consistent with what
information foraging theory advocates but did not mention how
any specific information foraging theory constructs, such as
scent, matched up with empirical observations [34].

To our knowledge, none of the techniques above considered
information foraging in order to build their automatic debug-
ging interface. We therefore kindly argue that our visualization
to aid developers is better than the ones in the related work.

VII. CONCLUSION

In this paper, we discuss the added value of a visual-
ization technique to display the diagnostic reports produced
by the automatic coverage-based fault localization techniques,
previously proposed in [9]. We argue that such visualization,
and its integration in the Eclipse IDE as a plugin, is more
intuitive and leads developers quickly to the defects respon-
sible for observed failures than seeking the defects by just
using the source code, coverage information, and IDE features
(e.g., breakpoints). This visualization is intended to help the
developer to interpret the diagnostic report of fault localization
techniques. A hierarchical view of the system under test
- called Sunburst - is shown to the developer. This view
represents the hierarchical dependencies of the components
of the system. Furthermore, developers can also explore the
Sunburst visualization using many interaction features, such
as zooming and panning, and changing the root component,
as a way to abstract from the other components.

To explain the added value of the visualization, we use
information foraging theory. Information foraging is a theory to
explain and predict how people use environmental information
to achieve their goals. It builds its hypothesis upon optimal
foraging theory, drawing from noticed similarities between
developers’ information searching patterns and animal food
foraging strategies. In this paper, the goal is to find software
defects, whereas the environment information is the yielded
visual diagnostic report, features provided by the IDE (such
as opening editor in a given line), and the source code of the
software under analysis.

Future work includes the following. In information for-
aging, information scent is the perceived likelihood by the

predator that a cue will potentially lead to a prey. That
is, information scent is the programmer’s perception of the
value of information. We plan to enhance the visualization
by providing more cues to the developer; hence leading to
better information scent. We plan to do this by providing a
summary of the class by computing the frequencies of words
used in the class, allowing for a description of what each
class does. We plan to use the concepts of term frequency
(tf) and inverse-document frequency (idf), used in the field of
Information Retrieval [35] as a way of weighing and ranking
frequent words used in every class.

ACKNOWLEDGMENT

This work is financed by the ERDF - European Regional Development
Fund through the COMPETE Programme (operational programme for compet-
itiveness) and by National Funds through the FCT - Fundação para a Ciência
e a Tecnologia (Portuguese Foundation for Science and Technology) within
project PTDC/EIA-CCO/116796/2010.

REFERENCES

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. Van Gemund, “A
practical evaluation of spectrum-based fault localization,” Journal of
Systems and Software, vol. 82, no. 11, pp. 1780–1792, 2009.

[2] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the 24th
International Conference on Software Engineering, 2002, pp. 467–477.

[3] C. Liu, L. Fei, X. Yan, J. Han, and S. Midkiff, “Statistical debugging:
A hypothesis testing-based approach,” IEEE Transactions on Software
Engineering (TSE), vol. 32, pp. 831–848, 2006.

[4] E. Wong, T. Wei, Y. Qi, and L. Zhao, “A crosstab-based statistical
method for effective fault localization,” in Proceedings of the 1st Inter-
national Conference on Software Testing, Verification, and Validation
(ICST’08), 2008, pp. 42–51.

[5] A. J. Ko and B. A. Myers, “Debugging reinvented: asking and answering
why and why not questions about program behavior,” in Proceedings
of the 30th international conference on Software engineering. New
York, NY, USA: ACM, 2008, pp. 301–310.

[6] D. Cubranic, G. Murphy, J. Singer, and K. Booth, “Hipikat: a project
memory for software development,” IEEE Transactions on Software
Engineering, vol. 31, no. 6, pp. 446 – 465, june 2005.

[7] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, 2011, pp. 199–209.

[8] P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. van Gemund, “Diag-
nosis of embedded software using program spectra,” in Engineering
of Computer-Based Systems, 2007. ECBS ’07. 14th Annual IEEE
International Conference and Workshops on the, Mar. 2007, pp. 213–
220.

[9] C. Gouveia, J. Campos, and R. Abreu, “Using HTML5 Visualizations
in Software Fault Localization,” in Proceedings of IEEE Working
Conference on Software Visualization (VISSOFT’13), 2013, to appear.

[10] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information forag-
ing theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197–215, 2013.

[11] S. D. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bellamy,
J. Lawrance, and I. Kwan, “An information foraging theory perspective
on tools for debugging, refactoring, and reuse tasks,” ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 22, no. 2,
2013.

[12] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-
Hall, Inc., 1988.

[13] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proceedings of the Testing:
Academic and Industrial Conference Practice and Research Techniques
- MUTATION, 2007, pp. 89–98.

[14] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2012, pp. 378–381.

[15] P. L. T. Pirolli, Information Foraging Theory: Adaptive Interaction with
Information, 1st ed. Oxford University Press, Inc., 2007.

[16] D. I. Sjøberg, T. Dybå, B. C. Anda, and J. E. Hannay, “Building theories
in software engineering,” in Guide to Advanced Empirical Software
Engineering. Springer London, 2008, pp. 312–336.

[17] J. Campos, “Regression Testing with GZoltar: Techniques for Test Suite
Minimization, Selection, and Prioritization,” MSc Thesis, University of
Porto, 2012.

[18] B. Liblit, “Cooperative debugging with five hundred million test cases,”
in Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA’08), 2008, pp. 119–120.

[19] M. Nica and F. Wotawa, “From constraint representations of sequential
code and program annotations to their use in debugging,” in Proceedings
of the 18th European Conference on Artificial Intelligence (ECAI’08),
vol. 178, 2008, pp. 797–798.

[20] M. Burger and A. Zeller, “Minimizing reproduction of software fail-
ures,” in Proceedings of the 2011 International Symposium on Software
Testing and Analysis (ISSTA’11), 2011, pp. 221–231.

[21] G. K. Baah, A. Podgurski, and M. J. Harrold, “Causal inference for
statistical fault localization,” in Proceedings of the 19th international
symposium on Software testing and analysis (ISSTA’10), ser. ISSTA ’10,
2010, pp. 73–84.

[22] ——, “Mitigating the confounding effects of program dependences for
effective fault localization,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of
software engineering (ESEC-FSE’11), 2011, pp. 146–156.

[23] J. Rößler, G. Fraser, A. Zeller, and A. Orso, “Isolating failure causes
through test case generation,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis (ISSTA’12), 2012, pp.
309–319.

[24] J. K. Czyz and B. Jayaraman, “Declarative and visual debugging in
Eclipse,” in Proceedings of the 2007 OOPSLA workshop on eclipse
technology eXchange, 2007, pp. 31–35.

[25] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization for Fault
Localization,” in Proceedings of ICSE 2001 Workshop on Software
Visualization Toronto Ontario Canada, 2001, pp. 71–75.

[26] T. Janssen, R. Abreu, and A. Gemund, “Zoltar: A Toolset for Automatic
Fault Localization,” in Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2009), Nov.
2009, pp. 662–664.

[27] D. Hao, L. Zhang, L. Zhang, J. Sun, and H. Mei, “VIDA: Visual inter-
active debugging,” in Proceedings of the 31st International Conference
on Software Engineering, 2009, pp. 583–586.

[28] P. Bouillon, J. Krinke, N. Meyer, and F. Steimann, “EzUnit: A Frame-
work for Associating Failed Unit Tests with Potential Programming
Errors,” in Agile Processes in Software Engineering and Extreme
Programming, 2007, vol. 4536, pp. 101–104.

[29] P. Bouillon, M. Burger, and A. Zeller, “Automated debugging in Eclipse:
(at the touch of not even a button),” in Proceedings of the 2003 OOPSLA
workshop on eclipse technology eXchange, 2003, pp. 1–5.

[30] B. R. Liblit, “Cooperative Bug Isolation,” Ph.D. dissertation, University
of California, Berkeley, Dec. 2004.

[31] Y. Usui and S. Chiba, “Bugdel: an aspect-oriented debugging system,”
in Software Engineering Conference, 2005. APSEC ’05. 12th Asia-
Pacific, 2005.

[32] W. Mayer and M. Stumptner, “Evaluating Models for Model-Based
Debugging,” in Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, 2008, pp. 128–137.

[33] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32,
no. 12, pp. 971–987, Dec. 2006.

[34] J. Brandt, P. J. Guo, J. Lewenstein, and S. R. Klemmer, “Opportunistic
programming: how rapid ideation and prototyping occur in practice,”
in Proceedings of the 4th international workshop on End-user software
engineering, 2008, pp. 1–5.

[35] R. Baeza-Yates and B. Ribeiro-Neto, Modern information retrieval.
Addison Wesley, 1999.

