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Abstract. Spreadsheets are by far the most prominent example of end-
user programs of ample size and substantial structural complexity. In
addition, spreadsheets are usually not tested very rigorously and thus
comprise faults. Locating faults is a hard task due to the size and
the structure, which is usually not directly visible to the user, i.e.,
the functions are hidden behind the cells and only the computed val-
ues are presented. Hence, there is a strong need for debugging support.
In this paper, we adapt three program-debugging approaches that have
been designed for more traditional procedural or object-oriented pro-
gramming languages. These techniques are Spectrum-based Fault Lo-
calization, Spectrum-Enhanced Dynamic Slicing, and Constraint-based
Debugging. Beside the theoretical foundations, we present a more sophis-
ticated empirical evaluation including a comparison of these approaches.
The empirical evaluation shows that SFL (Spectrum-based Fault Lo-
calization) and SENDYS (Spectrum ENhanced Dynamic Slicing) are the
most promising techniques.

Keywords: End-User debugging, spreadsheets, spectrum-based fault
localization, model-based debugging.

1 Introduction

Spreadsheet tools, such as Microsoft Excel, iWork’s Numbers, and OpenOffice’s
Calc, can be viewed as programming environments for non-professional pro-
grammers [1]. In fact, these so-called “end-user” programmers vastly outnumber
professional ones: the US Bureau of Labor and Statistics estimates that more
than 55 million people use spreadsheets and databases at work on a daily ba-
sis [1]. Despite this trend, as a programming language, spreadsheets lack support
for abstraction, testing, encapsulation, or structured programming. As a conse-
quence, spreadsheets are error-prone. Numerous studies have shown that existing
spreadsheets contain redundancy and errors at an alarmingly high rate [2].
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Furthermore, spreadsheets are applications created by single end-users with-
out planning ahead of time for maintainability or scalability. Still, after their
initial creation, many spreadsheets turn out to be used for storing and process-
ing increasing amounts of data as well as supporting increasing numbers of users
over long periods of time. Therefore, debugging (i.e., locating the cell(s) that are
responsible for the wrong output in a given cell) can be a rather cumbersome
task, requiring substantial time and effort.

In spite of having the potential to benefit from recent developments in the
software engineering domain, the truth is that only a few attempts have been
made to adapt software engineering techniques to the spreadsheet world. The
objective of this paper is to advance the state of the art in spreadsheet debugging
by applying popular, mature techniques developed to analyze software systems.
Such techniques will have a positive impact in the overall quality of spreadsheets.

In this paper, we adapt three program-debugging approaches that have been
designed for more traditional procedural or object-oriented programming lan-
guages. In particular, we describe how to modify traditional fault localization
techniques in order to render them applicable to the spreadsheet world. We con-
sider the following techniques in our study: Spectrum-based Fault Localization
(SFL) ]3], Spectrum-enhanced dynamic slicing (SENDYS) [4], and Constraint-
based Debugging (CoNBua) [5]. We evaluate the efficiency of the approaches
using real spreadsheets taken from the EUSES Spreadsheet Corpus [6].

The remainder of the paper is organized as follows: Section [2] deals with the
related work. In addition, existing spreadsheet debugging and testing techniques
are discussed. Section [B] deals with the syntax and semantics of spreadsheets.
Furthermore, the Spreadsheet Debugging problem is defined. Section [ explains
the changes that have to be made in order to use the existing debugging tech-
niques for debugging of spreadsheets. Three traditional debugging techniques
are explained in detail. Section Bl deals with the setup and the results of the
empirical evaluation. Finally, Section [6] concludes this paper and presents ideas
for future empirical evaluations.

2 Related Work

Since spreadsheet developers are typically end-users without significant back-
ground in computer science, there has been considerable effort to adapt software
engineering principles to form a spreadsheet engineering discipline (e.g., [7-11]).

Some of the work presented in this paper is based on model-based diagno-
sis |[12], namely its application to (semi-)automatic debugging (e.g., [13]). In con-
trast to previous work, the work presented in this paper does not use logic-based
models of programs but instead uses a generic model which can be automatically
computed from the spreadsheet. A similar approach has been presented recently
to aid debuggers in pinpointing software failures [14]. Moreover, Jannach and
Engler presented a model-based approach [15] to calculate possible error causes
in spreadsheets. This approach uses an extended hitting-set algorithm and user-
specified or historical test cases and assertions.
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GoalDebug [16, [17] is a spreadsheet debugger for end users. Whenever the
computed output of a cell is incorrect, the user can supply an expected value for
a cell, which is employed by the system to generate a list of change suggestions for
formulas that, when applied, would result in the user-specified output. In [16] a
thorough evaluation of the tool is given. GoalDebug employs an approach similar
to the constraint-based approach presented in this paper.

Spreadsheet testing is closely related to debugging. In the WYSIWYT system
users can indicate incorrect output values by placing a faulty token in the cell.
Similarly, they can indicate that the value in a cell is correct by placing a correct
token [18]. When a user indicates one or more program failures during this testing
process, fault localization techniques direct the user’s attention to the possible
faulty cells. However, WYSIWYT does not provide any suggestions for how to
change erroneous formulas.

3 Basic Definitions

A spreadsheet is a matrix comprising cells. Each cell is unique and can be ac-
cessed using its corresponding column and row number. For simplicity, we assume
a function ¢ that maps the cell names from a set CELLS to their correspond-
ing position (z,y) in the matrix where x represents the column and y the row
number. The functions ¢, and ¢, return the column and row number of a cell
respectively.

Aside from a position, each cell ¢ € CELLS has a value v(c) and an expres-
sion £(c). The value of a cell can be either undefined ¢, an error L, or any number,
boolean or string value. The expression of a cell £(c) can either be empty or an
expression written in the language £. The value of a cell ¢ is determined by its
expression. If no expression is explicitly declared for a cell, the function ¢ returns
the value e.

Areas are another important basic element of spreadsheets. An area is a set
consisting of all cells that are within the area that is spanned by the cells ¢1,¢o €
CELLS. Formally, we define an area as follows:

R c wz(c1) < pe(c) < pu(ca) &
c1i02 Sdef { € CBLLS ‘mci) < on(©) < polca) }

Obviously, every area is a subset of the set of cells (ci:co € CELLS). After
defining the basic elements of spreadsheets, we introduce the language £ for
representing expressions that are used to compute values for cells. For reasons
of simplicity, we do not introduce all available functions in today’s spreadsheet
implementations. Instead and without restricting generality, we make use of
simple operators on cells and areas. Extending the used operators with new ones
is straightforward.

The introduced language takes the values of cells and constants together with
operators and conditionals to compute values for other cells. The language is a
functional language, i.e., only one value is computed for a specific cell. Moreover,
we do not allow recursive functions. First, we define the syntax of L.
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Definition 1 (Syntax of £). We define the syntax of L recursively as follows:

— Constants k representing €, number, boolean, or string values are elements
of L (ie., ke L)
All cell names are elements of L (i.e., CELLS C L).
— If e1,e9,e3 are elements of the language (e1,ea,e3 € L), then the following
expressions are also elements of L:
o (e1) is an element of L.
e Ifo is an operator (o € {+,-, * /,<,=,>}), then e1 0 ea is an element
of L.
e if(e1; ea; e3) is an element of L.
— If c1:c9 is an area, then sum(cy:ca) is an element of L.

Second, we define the semantics of £ by introducing an interpretation function
[-] that maps an expression e € £ to a value. The value is € if no value can
be determined or L if a type error occurs. Otherwise it is either a number, a
boolean, or a string.

Definition 2 (Semantics of £). Let e be an expression from L and v a func-
tion mapping cell names to values. We define the semantic of L recursively as
follows:

— If e is a constant k, then the constant is given back as result, i.e., [e] = k.
— If e denotes a cell name c, then its value is returned, i.e., [e] = v(c).
— If e is of the form (e1), then [e] = [ei].
If e is of the form ey o es, then its execution is defined as follows:
o [f either [e1] = L or [ea] = L, then [e1 0 ea] = L.
o clse if either [e1] = € or [ea] = ¢, then [e1 0 ea] = e.
o clseifoe{+,-, % /,<, = >}, then

[ex 0 €] = [e1] o [ez2] if all sub-expressions evaluate to a number
e L otherwise

— If e is of the form if(e1; ea; e3), then

le2] if [ei1] = true
les] if [e1] = false
€ Zf [61]] =€

1 otherwise

[e] =

— If e is of the form sum(cy:c2), then

€] { > el if all cells in ci:ca have a number or € (treated as 0) as value
el = cEcyicy

L otherwise

Frequently, we require information about cells that are used as input in an
expression. We call such cells referenced cells.
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Definition 3 (Referenced cell). A cell ¢ is said to be referenced by an expres-
sion e € L, if and only if ¢ is used in e.

We furthermore introduce a function p : £ + 2¢PLLS that returns the set of
referenced cells. Formally, we define p as follows:

Definition 4 (The function p). Let e € L be an expression. We define the
referenced cells function p recursively as follows:

— If e is a constant, then p(e) = 0.

— Ife is a cell c, then p(e) = {c}.

— Ife=(er), then ple) = plea).

— Ife =e1 0 ea, then p(e) = p(e1) U p(ea).

— If e =if(eq; e2; e3), then p(e) = pe1) U p(ez) U p(es).
— If e = sum(cy:cz), then p(e) = cq:ca.

A spreadsheet is a matrix of cells comprising values and expressions written in
a language L. In addition, we know that the values of cells are determined by
their expressions. Hence, we can state that Ve € CELLS : v(c) = [¢(c)] must
hold. Unfortunately, we face two challenges: (1) In all of the previous definitions,
the set of cells need not be of finite size. (2) There might be a loop in the
computation of values, e.g. a cell ¢ with ¢(c¢) = ¢+1. In this case, we are not able
to determine a value for cell ¢. In order to solve the first challenge, we formally
restrict spreadsheets to comprise only a finite number of cells.

Definition 5 (Spreadsheet). A countable set of cells I C CELLS s a spread-
sheet if all cells in II have a non empty corresponding expression or are refer-
enced in an expression, i.e., Yc € IT : (£(c) # €)V (3¢ € IT : ¢ € p(€(c'))).

In order to solve the second challenge, we have to limit spreadsheets to loop-free
spreadsheets. For this purpose, we first introduce the notation of data depen-
dence between cells, and furthermore the data dependence graph, which repre-
sents all dependencies occurring in a spreadsheet.

Definition 6 (Direct dependence). Let c1, co be cells of a spreadsheet II. The
cell co depends directly on cell ¢y if and only if ¢ is used in co’s corresponding
expression, i.e., dd(c1,c2) < (c1 € p(£(ca))).

The direct dependence definition states the data dependence between two cells.
This definition can be extended to the general case in order to specify indirect
dependence. In addition, this dependence definition immediately leads to the
definition of a graph that can be extracted from a spreadsheet.

Definition 7 (Data dependence graph (DDQG)). Let II be a spreadsheet.
The data dependence graph (DDG) of II is a tuple (V, A) with:

— V as a set of vertices comprising exactly one vertex n. for each cell ¢ € IT

— A as a set comprising arcs (Ne,,Ne,) if and only if there is a direct de-
pendence between the corresponding cells ¢1 and co respectively, i.e. A =
U(ney s ney) where ney,ne, € V Add(er,c2).
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From this definition, we are able to define general dependence between cells. Two
cells of a spreadsheet are dependent if and only if there exists a path between the
corresponding vertices in the DDG. In addition, we are able to further restrict
spreadsheets to face the second challenge.

Definition 8 (Feasible spreadsheet). A spreadsheet II is feasible if and only
if its DDG 1is acyclic.

From here on, we assume that all spreadsheets of interest are feasible. Hence,
we use the terms spreadsheet and feasible spreadsheet synonymously. Standard
spreadsheet programs like Excel rely on loop-free computations.

In this paper, we focus on testing and debugging of spreadsheets. In ordinary
sequential programs, a test case comprises input values and expected output
values. If we want to rely on similar definitions, we have to clarify the terms input,
output and test case. Defining the input and output of feasible spreadsheets is
straightforward by means of the DDG.

Definition 9 (Input, output). Given a feasible spreadsheet II and its DDG
(V, A), then the input cells of II (or short: inputs) comprise all cells that have
no incoming edges in the corresponding vertex of Il ’s DDG. The output cells of
IT (or short: outputs) comprise all cells where the corresponding vertex of the
DDG has no outgoing vertex.

inputs(IT) = {c|B(ne,ne) € A}
outputs(IT) = {c|B(ne,ne) € A}

All cells of a spreadsheet that serve neither as input nor as output are called
intermediate cells. With this definition of input and output cells we are able to
define a test case for a spreadsheet and its evaluation.

Definition 10 (Test case). Given a spreadsheet II, then a tuple (I,0) is a
test case for II if and only if:

— 1 is a set of tuples (c,e) specifying input cells and their values. For each
¢ € inputs(IT) there must be a tuple (c,e) in I where e € L is a constant.

— O is a set of tuples (c,e) specifying expected output values. The expected
output values must be constants of L.

In our setting, test case evaluation works as follows: First, the functions ¢(c) of
the input cells are set to the constant values specified in the test case. Subse-
quently, the spreadsheet is evaluated. Afterwards, the computed output values
are compared with the expected values stated in the test case. If at least one
computed output value is not equivalent to the expected value, the spreadsheet
fails the test case. Otherwise, the spreadsheet passes the test case.

In traditional programming languages, test cases are separated from the source
code. Usually, there are several test cases for one function under test. Each of
the test cases calls the function with different parameters and checks the cor-
rectness of the returned values. However, test cases are only implicitly encoded
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into spreadsheets. This means, that test cases are not explicitly separated from
the formulas under test. If the user wants to add an additional test case, he or
she has to duplicate the spreadsheet. A duplication of a spreadsheet for test-
ing purposes is unpractical since the duplicates have to be updated when the
spreadsheet is modified or extended. Therefore, usually only one failing test case
exists. Hence, we reduce the debugging problem for spreadsheets to handle only
one test case.

Definition 11 (Spreadsheet debugging problem). Given a spreadsheet IT
and a failing test case (I,0), then the debugging problem is to find a root cause
for the mismatch between the expected output values and the computed ones.

We define the spreadsheet debugging problem as a fault localization problem.
This definition implies that the following debugging approaches pinpoint certain
cells of a spreadsheet as possible root causes of faults. However, the approaches
do not make any suggestions how to change these parts. Alternatively, the de-
bugging problem can be defined as a fault correction problem.

4 Debugging Approaches

Traditional procedural and object-oriented program-debugging techniques can-
not be directly transferred to spreadsheets for the following reasons: In a spread-
sheet paradigm, the concept of code coverage does not exist since there are no
explicit lines of code like in traditional programming paradigms. Moreover, there
is no concept of test execution.

Therefore, in order to use traditional program-debugging techniques on
spreadsheets, we have to perform some modifications: the lines of code in a
traditional programming paradigm are mapped to the cells of a spreadsheet.
There are cells designed to receive user input, cells to process data (using spread-
sheet formulas), and cells intended to display the results. As an alternative to
the code coverage of traditional programming paradigms, we compute so-called
cones (data dependencies of each cell).

Definition 12 (The function CONE). Given a spreadsheet IT and a cell ¢ €
11, then we define the function CONE recursively as follows:

CONE(c) = c¢U U CONE(c")
c’€p(c)

The correctness of the output cells is determined either by the user, by comparing
the results of the current spreadsheet IT with another spreadsheet considered
correct, or by applying techniques to automatically detect “bad smells” [19].

With these modifications, we are able to apply three traditional fault localiza-
tion techniques on spreadsheets. In the following subsections, we explain these
debugging techniques.
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4.1 Spreadsheets Spectrum-Based Fault Localization

In traditional programming paradigms, Spectrum-based fault localization
(SFL) [3] uses code coverage data and the pass/fail result of each test execu-
tion of a given system under test (SUT) as input. The code coverage data [20]
is collected from test cases by means of an instrumentation approach. This data
is collected at runtime and is used to build a so-called hit-spectra matrix. A hit-
spectra matrix A is a binary matrix where each column i represents a system
component and each row j represents a test case. The content of the matrix
a;; represents whether component ¢ was used (true) or not (false) during test
execution j. The results of the test executions (pass/fail) are stored in an error
vector . The error vector is a binary array where each position ¢ represents a
test execution. The value of the error vector e at position ¢ is true if the test
case 17 failed, otherwise false.

SFL uses similarity coefficients to estimate the likelihood of a given software
component being faulty. Similarity coefficients compute the relationship between
each column of the matrix (representing a system component) and the error
vector. This similarity coefficient and the failure probability of the corresponding
system component are directly related [21]. The coeflicients are used to create
rankings of system components [22] or to create interactive visualizations of the
SUT, revealing the most suspicious parts of the application’s source code [23].

In the spreadsheet paradigm, we cannot use the coverage data of test exe-
cutions. Instead, we use the cones of the output cells (see Definition [[2]). From
the cones, the hit-spectra matrix can be generated (each row of the matrix has
the dependencies of one output cell). The error vector represents the correct-
ness of the output cells. The hit-spectra matrix and the error vector allow the
use of any SFL algorithm to compute the failure probability of each spreadsheet
cell. In the empirical evaluation, we use the Ochiai similarity coefficient, since
Ochiai is known to be one of the most efficient similarity coefficients used in SFL
techniques [21].

4.2 Spectrum-Enhanced Dynamic Slicing Approach

Spectrum-Enhanced Dynamic Slicing (SENDYS) [4] is a technique that combines
SFL with a lightweight model-based software debugging (MBSD) technique [24]. In
traditional programming paradigms, similar to SFL, SENDYS uses coverage data
and the result of each test execution (pass/fail) of a given SUT as input. In addi-
tion, the slices of the negative test cases are required. SENDYS works as follows:
the similarity coefficients computed by means of SFL act as a priori probabilities
in the MBSD approach. Each statement gets assigned its similarity coefficient as
the initial fault probability. The slices of the faulty variables are treated as con-
flict sets and the minimal hitting sets (i.e. the diagnoses) are computed. A set h
is a hitting set for set of conflict sets C'O if and only if for all ¢ € CO, there ex-
ists a non-empty intersection between ¢ and h (i.e., Ve € CO : ¢ N h # (). From
the initial statement fault probabilities, the fault probabilities of the diagnoses are
computed. Therefore, the probabilities of the statements contained in the diagno-
sis are multiplied with the counter-probabilities of the statements not contained
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in the diagnosis. Afterwards, the probabilities are mapped back to the statements.
For each statement, the probabilities of the diagnoses containing that statement
are summed up. Finally, the statements are ranked according to their probabili-
ties. The statement with the highest probability is ranked at the first position.

In order to apply SENDYS to the spreadsheet paradigm, we propose to make
the same modifications as described in the section about the SFL technique.
In addition, we have to use cones instead of slices for the MBSD part. The
major difference between cones and slices are the used dependencies. For slices,
control- and data dependencies are used. In contrast, cones only make use of
data dependencies.

4.3 Constraint-Based Debugging

There exist several model-based software debugging (MBSD) techniques which
use constraints as part of their debugging strategy, e.g. [14, [25]. In these tech-
niques, program statements are converted into their constraint representation.
Each converted statement is connected with a variable representing the health
status of the statement: a statement either behaves as specified or the statement
has the health status ‘abnormal’. A constraint solver is used to compute all
possible solutions for the health states of all statements so that the constraints
of the program are feasible. All statements with the health status ‘abnormal’
are explanations for an observed misbehavior. Some solutions of the constraint
solver contain several ‘abnormal’ statements. In this case, all ‘abnormal’ state-
ments must be changed in order to correct the faulty program. The result of
applying a constraint-based debugging technique on a faulty program is a set of
‘abnormal’ variables representing the health status of the corresponding state-
ments. There is no conclusion which of the statements is more likely to be faulty.
Unlike SFL and SENDYS, this method can not generate a likelihood-ranking of
possibly faulty statements.

In the context of spreadsheet debugging, cells are used instead of statements:
for each cell, the contained formula is converted into a set of constraints. CON-
Bua |§] is a technique that is based on the above described technique, but is
designed for debugging spreadsheets.

5 Empirical Evaluation

In this section, we are evaluating the previously described approaches by means
of the EUSES spreadsheet corpus [6]. In the first part, we are evaluating the
ranking of the faulty statements for SFL and SENDYS. In the second part, we
are evaluating the size of the result set of CONBUG in comparison to the union
and intersection of the slices. However, first of all we are going the explain the
experimental setup.

In a first filtering step, we skipped around 240 Excel 5.0 spreadsheets that are
not compatible with our implementation, since our implementation is build on
Apache POI (http://poi.apache.org/) and POI does not support Excel 5.0.
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In a second filtering step, we removed all spreadsheets containing less than five
formulas (about 2,300 files). We have performed this filtering step because auto-
matic fault localization only makes sense for larger spreadsheets. A small spread-
sheet is still manageable and thus fault localization can be easily performed
manually. For small spreadsheets, a fault correction approach makes more sense
than just a fault localization approach. Finally, around 1,400 spreadsheets re-
main for our case study.

For each spreadsheet, we automatically created up to five first-order mutants.
A mutant of a spreadsheet is created by randomly choosing a formula cell of the
spreadsheet and applying a mutation operator on it. According to the classifi-
cation of spreadsheet mutation operators of Abraham and Erwig [26], we used
the following mutation operators:

— Continuous Range Shrinking (CRS): We randomly choose whether to incre-
ment the index of the first column/row or decrement the index of the last
column/row in area references.

— Reference Replacement (RFR): We randomly choose whether to increment
the row or the column index of references. We do not explicitly differentiate
between single references and references in non-contiguous ranges. For this, a
mutation can change a single reference in a non-contiguous range, but never
changes the amount of elements in the range.

— Arithmetic Operator Replacement (AOR): We replace ‘+’ with ‘-’ and vice
versa and *’ with ‘/’.

— Relational Operator Replacement (ROR): We replace the operators ‘=", ‘<’
‘<=’ ‘>’ ‘>=’ and ‘<>’ with one another.

— Constants Replacement (CRP):

e For integer values, we add a random number between 0 and 1000.
e For real values, we add a random number between 0.0 and 1.0.
e For Boolean values, we replace ‘true’ with ‘false’ and vice versa.

— Constants for Reference Replacement (CRR): We replace a reference within
a formula through a constant.

— Formula Replacement with Constant (FRC): We replace a whole formula
with a constant.

— Formula Function Replacement (FFR): We replace ‘SUM’ with ‘AVERAGE’
and ‘COUNT’ and vice versa. We replace ‘MIN’ with ‘MAX’ and vice versa.

For each mutant, we check whether the following two conditions are satisfied:
(1) The mutant must be valid, i.e. it does not contain any circular references.
(2) The inserted fault must be revealed, i.e. at least for one output cell, the
computed value of the mutant must differ from the value of the original spread-
sheet. If one of these conditions is violated, we discard the mutant and generate
new mutants until we obtain a mutant that satisfies both conditions. We failed
to create mutants for some of the spreadsheets because in many spreadsheets,
input values are absent. For this reason, the spreadsheets lack values for output
variables. Please note, that the creation of test cases is out of the focus of this
paper. We only rely on existing input-output pairs.
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We automatically created 622 mutants. Table[Il gives an overview of the char-
acteristic of the created mutants. The number of formulas contained in the
spreadsheets ranges from 6 to more than 4,000. This indicates that the eval-
uated approaches are able to handle large spreadsheets.

Table 1. Characteristics of the created mutants

Characteristic Avg Min Max Std.dev Median
Number of formulas 225.0 64,170 384.9 104.5
Number of incorrect output cells 1.7 1 22 1.9 1
Number of correct output cells  64.9 0 2,962 162.5 24

In the first part of the empirical evaluation, we compared the fault localization
capabilities of SFL and SENDYS by applying them to the generated mutants. In
addition, we contrast these techniques with two primitive techniques, namely the
union and intersection of the faulty cones. Table Plsummarizes the results of this
comparison. The evaluation was performed on an Intel Core2 Duo processor (2.67
GHz) with 4 GB RAM with Windows 7 Enterprise (64-bit) as operating system
and Java 7 as runtime environment. SENDYS performs slightly better than SFL
and the intersection of the cones. Since we only created first-order mutants, the
intersection of the slices always contains the faulty cell. Please note that in case
of higher-order mutants, the faulty cell could be absent in the intersection of
the cones. This happens when two independent faults are contained in the same
spreadsheet and both faults are revealed by different output cells. Therefore,
the intersection of the cones is not the best choice. Concerning the computation
time, SFL has only a small overhead compared to the union and intersection of
the cones. SENDYS requires nearly five times longer for the computations.

Table 2. Average ranking and computation time of union, intersection, SFL, and
SENDYS. The column ‘Avg. relative ranking’ shows the average ranking of the faulty cell
normalized to the number of formula cells per spreadsheet. This evaluation comprises
622 spreadsheets.

Avg. absolute Avg. relative Avg. comp.

Technique ranking ranking time (in ms)
Union (cones of faulty output) 41.1 27.3% 15.6
Intersection (cones of faulty output) 30.8 22.0 % 15.6
SFL 26.3 20.3% 16.9
SENDYS 24.3 19.7% 79.6

Figure [ graphically compares the fault localization capabilities of the ap-
proaches for the 622 investigated faulty program versions. The x-axis represents
the percentage of formula cells that is investigated. The y-axis represents the
percentage of faults that are localized within that amount of cells. This figure
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reads as follows: if you investigate the top 40 % ranked cells in all of the 622
faulty spreadsheets, SFL and SENDYS find the fault in 80 % of the Spreadsheets.
It can be seen that SFL and SENDYS perform slightly better than the intersection
and marginally better than the union of the cones. This means that faults can
be detected earlier than when using the intersection or the union.

100 T T T ]
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L g0l g T T B
g eI
P W FEET
T 60f == .- N
o i '
>
3 L ’I, ““““ Union i
s 40 4. )
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% of cells examined

Fig. 1. Comparison of the SFL, SENDYS, the Union and Intersection of the cones in
terms of the amount of formula cells that must be investigated

In the second part of the empirical evaluation, we investigate the debugging
capabilities of CONBuUG. We separated the evaluation of CoONBuUG from the
evaluation of SFL and SENDYS because the prototype implementation of CON-
BuaG does not support all available mathematical operations available in Excel.
Therefore, we filter out all spreadsheets which contain unsupported operations.
Subsequently, 227 mutants remain for the evaluation of CoNBuaG. These mu-
tants contain on average 219.8 formula cells. The largest mutant contains 2564
formula cells. Table ] compares CONBUG to the union and the intersection of
the cones. For completeness reasons, we add the data of SFL and SENDYS for the
227 spreadsheets. CONBuUG performs better than the union, but worse than the
intersection. However, CONBUG guarantees to contain the faulty cell even in the

Table 3. Average ranking and computation time of union, intersection, SFL, SENDYS,
and CoNBua. The column ‘Avg. relative ranking’ shows the average ranking of the
faulty cell normalized to the number of formula cells per spreadsheet. This evaluation
comprises 227 spreadsheets.

Avg. absolute Avg. relative Avg. comp.

Technique ranking ranking time (in ms)
Union (cones of faulty output) 34.8 29.3% 14.0
Intersection (cones of faulty output) 33.6 27.5% 13.9
SFL 32.9 271 % 15.0
SENDYS 31.9 27.0% 63.9

CoNBua 33.9 27.9% 631.7
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case of multiple faults. However, the faulty cell can be absent in the intersection
of the cones. From Table [ we see that the differences of the obtained results are
small and might not be statistical significant.

Why are the results of Table [ so close? One explanation might be the struc-
ture of the used spreadsheets. In particular, the 227 spreadsheets used for ob-
taining the results of TableBlhave 1.2 faulty output variables on average whereas
the remaining 395 spreadsheets used in Table 2] have on average 2 faulty out-
put variables. The low number of faulty output variables might be a reason for
poor performance of CONBuG. Further investigations are necessary to clarify
the relationship of the structure of the spreadsheets and the performance of
the approaches. Moreover, the debugging performance in case of multiple faults
in spreadsheets is also an open research question. We expect better results for
CoONBUG in case of multiple faults, similar as in constraint-based approaches for
traditional programming paradigms [27].

6 Conclusion

While spreadsheets are used by a considerable number of people, there is little
support for automatic spreadsheet debugging. In this paper, we addressed this
gap. In particular, we adapted and applied to spreadsheets three popular de-
bugging techniques designed for more traditional procedural or object-oriented
programming languages. To this end, we formally defined the basic elements
of spreadsheets and formalized fault localization in spreadsheets as spreadsheet
debugging problem. In addition, we explained what modifications to the tradi-
tional debugging techniques are necessary. The main modification is to use cones
instead of execution traces and slices.

We evaluated the fault localization capabilities of the proposed techniques,
SFL, SENDYS, and CONBUG, using the well-known EUSES spreadsheet corpus [6].
The evaluation showed that SFL and SENDYS are the most promising techniques.
However, the evaluation needs to be extended in several aspects: (1) It is nec-
essary to evaluate higher-order mutants. (2) The discussed techniques are only
a small selection of the available traditional debugging techniques. Thus, other
debugging techniques should be adapted to spreadsheets. We plan to make the
mutants used in this evaluation as well as higher-order mutants publicly avail-
able. This will ensure that new spreadsheet debugging techniques can be com-
pared to the techniques discussed in this paper. Furthermore, the acceptance of
such debugging techniques must be evaluated throw a user study.

SFL and SENDYS are debugging techniques which rank cells according to their
likelihood of containing the fault. In contrast, CONBUG is a debugging technique
that filters out cells which cannot explain the observed faulty values. Therefore,
CoNBUG can be used to filter out statements from the rankings of SFL and
SENDYS. We plan to evaluate this filter mechanism in future work.
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