FaultySheet Detective:
When Smells Meet Fault Localization

Rui Abreu*, Jicome Cunha'*, Jodo Paulo Fernandes'®, Pedro Martins®, Alexandre Perez*, Jodo Saraival

* Departamento de Engenharia Informatica, FEUP, Portugal

rui @computer.org,alexandre.perez @fe.up.pt
T HASLab/INESC TEC & Universidade do Minho, Portugal

{jpaulo,prmartins,jas } @di.uminho.pt
1 Universidade Nova de Lisboa, Portugal
jacome @fct.unl.pt
§ RELEASE, Universidade da Beira Interior, Portugal

Abstract—This paper presents a tool, dubbed FaultySheet
Detective, for aiding in spreadsheet fault localization, which
combines the detection of bad smells with a generic spectrum-
based fault localization algorithm.

Keywords—Spreadsheets; Smells; Errors; Fault Localization;
FaultySheet Detective.

I. INTRODUCTION

Spreadsheet systems have achieved an astonishing success
in terms of both the number of their users as well as the variety
of domains in which they are used. This importance, however,
has not been achieved together with effective mechanisms for
error prevention, as shown by several studies [1], [2], and a
long list of horror stories with real impacts'.

We therefore believe that spreadsheet fault localization?
techniques are much needed. In fact, the natural trend of
incorporating well-established programming language features
under spreadsheets has been witnessed again by the inte-
gration of spectrum-based fault localization methods under a
spreadsheet system [3] and the identification of spreadsheet
bad smells [4], [5], [6], [7], while these techniques are well
established for traditional programming languages: [8] and [9],
respectively.

In this paper we present the FaultySheet Detective tool that
combines bad smells and fault localization techniques to create
a debugging framework for spreadsheets. This tool implements
the full state-of-the-art catalog of spreadsheet smells: we cover
all spreadsheet smells published in the literature. Our method
initially builds on the suspicion-raising nature of smells to
identify spreadsheet cells that may be of harm. Secondly, a
particular subset of all cells identified by smells is provided
as input to a fault localization algorithm. This step is re-
alized as an attempt to identify spreadsheet cells that may
have contributed to a cell being considered a suspect. The
combination of bad smells and fault localization techniques
used by FaultySheet Detective is described in detail in [10].

Empirical experiments using the toolset, thoroughly re-
ported and discussed in [10], using a well-known faulty
spreadsheet catalog, have shown that our approach is able to

IThis list is available at: http://www.eusprig.org/horror-stories.htm
2In this paper, we also use the term debugging.

identify more than 70% of errors in spreadsheets in a setting
where two out of three identified faulty cells are errors.

II. SMELLS MEET FAULT LOCALIZATION

In this section we briefly introduce the concepts of spread-
sheet smells, fault localization for spreadsheets, and how these
two techniques can be combined to find faults in spreadsheets.

A. Spreadsheet Smells

The concept of code smell was introduced by Martin
Fowler as a first symptom that may correspond to a deeper
problem in a system [9]. This definition holds two subtleties:
i) a smell must be easy to spot, e.g., in an object-oriented
language, a method with over a dozen arguments may imme-
diately be spotted; ii) a smell does not always imply an error:
a method with twenty arguments may be free of problems.
Fowler also proposed an initial catalog of potential problems
in the form of smells. This catalog was originally defined for
source code, but Fowler’s work inspired several authors to
propose different catalogs of smells for spreadsheets [6], [11],
[5], [4]. We have taken the union of all the proposed catalogs,
obtaining the comprehensive list that we review next.

1. Standard Deviation: Detects cells not following the normal
distribution of a group of cells holding numerical values.

2. Empty Cell: Cells that are left empty but that occur in a
context that suggests they should have content are detected.

3. Pattern Finder: Finds broken patterns, e.g. a row containing
only numerical values except for one cell holding a formula.

4. String Distance: Signals string cells that differ minimally
with respect to other surrounding cells.

5. Reference to Empty Cells: Formulas pointing to empty cells
are detected.

6. Quasi-Functional Dependencies: Occurs when equal values
in a column correspond to the same values in another column,
except for a few cases.

7. Multiple Operations: Flags formulas with many operations.

8. Multiple References: When a formula references many
different cells this smell is raised.



9. Conditional Complexity: Detects formulas with many con-
ditional operations.

10. Long Calculation Chain: Detects formulas with long
calculation chains.

11. Duplicated Formulas: Indicates that similar snippets of
code are used throughout different cells.

12. Inappropriate Intimacy: Recognizes a worksheet that is too
much related to a second one.

13. Feature Envy: Appears when a formula is more interested
in the cells of a worksheet other than the one that contains it.

14. Middle Man: Recognized if a ’middle man’ formula
contains only a reference to another cell and calculations.

15. Shotgun Surgery: Occurs when a formula is referred by
many different formulas in different worksheets.

FaultySheet Detective starts by automatically processing
spreadsheets and determining their smelly cells. A subset of
these cells is then selected, and automatically feeds a fault
localization process. The purpose of the next subsection is to
revise spectrum-based fault localization for spreadsheets.

B. Spectrum-based Fault Localization for Spreadsheets

Spectrum-based Fault Localization (SFL) is a software
debugging technique that calculates the likelihood of each
system component (e.g., each statement) being faulty [12].
This technique exploits coverage information from passed an
failed system runs. The information gathered from these runs
is their hit spectra matrix, which consists of a set of flags for
every component that represent whether they were touched
or not by each execution. The fault localization consists in
identifying what components resemble the passed and failed
runs the most. For instance, if a component was only executed
when the system failed, it has a higher likelihood of containing
a fault when compared to a component that was only executed
on passed executions. Similarity coefficients, like the Ochiai
coefficient [13], are calculated for every component and ranked
to yield the diagnostic report.

In order to use SFL for spreadsheet fault localization,
some modifications need to be performed [3]. For instance,
the concept of code coverage does not translate directly to the
spreadsheet paradigm. As an alternative to code coverage, the
cone of a cell (i.e., a set of a cell and its data dependencies)
can be computed. The set of cones for every output cell (a
cell that is not referenced by any other cell) is essentially the
hit-spectra matrix needed to perform fault localization.

C. Smells Meet Fault Localization

FaultySheet Detective combines both techniques just de-
scribed. It first detects all the smells contained in a spreadsheet.
These smelly cells are then passed as arguments to the fault
localization algorithm. In fact it is possible to select which
smells are detected, thus restricting the cells sent to the fault
localization algorithm. Moreover, it is also possible to define
the threshold of the number of smells shown, that is, the user
can decide to see only the cells containing the higher number
of smells, the cells with the higher number of smells and the
ones with the higher less one, etc.

III. THE SMELLSHEET DETECTIVE FRAMEWORK

In this section we describe FaultySheet Detective. In the
past we have introduced another related, but it could only
compute seven smells and did not use the algorithms for
fault localization [11], thus being much more limited than
FaultySheet Detective.

A. Architecture

FaultySheet Detective supports both desktop spreadsheets
written in Excel and spreadsheets developed in the Google
Drive platform. The support for online spreadsheets was added
motivated by the fact that the migration from desktop to online-
based applications is becoming very common, and even the
popular Microsoft Office suite has its online version.

The implementation of this tool combines the Java pro-
gramming language, the Apache POI library, and the Google
Data API’'s to work with spreadsheets within the Google
Drive environment. Figure 1 illustrates the architecture of
FaultySheet Detective and in the following paragraphs we will
explain in detail each part of this design.

FaultySheet Detective

Google Drive

Input Spreadsheet Spreadsheet

Smell

Detection
Output
N . Spreadsheet
. G Generic -
> Framework ==

. for A
| Apache POI Wt
S|

preadsheet -
Analysis
A
Spectrum-Based

Fault
Localization

]
"
el

A

Local Input
Spreadsheet

Fig. 1. FaultySheet Detective architecture.

a) Apache POI: Apache POI is a Java library that ma-
nipulates spreadsheet artifacts?. It allows to read a spreadsheet
file and store it in an object with several useful methods. It
also allows to export one spreadsheet object to a spreadsheet
file. We use this library as support for our Generic Framework
for Spreadsheet Analysis. We also use it to create the new
spreadsheet annotated with the faults detected.

b) Google GData APIs: The Google GData API's*
provide external access to data and functionality through the
Google Data Protocol to various Google services. We use it to
access Google Drive accounts.

c) Generic Framework for Spreadsheet Analysis: Al-
though Apache POI is a very interesting tool to manipulate
spreadsheets, while implementing FaultySheet Detective, we
felt the need to abstract certain methods to allow Spreadsheet
operations to be easier and more analysis-oriented. Therefore,
we developed a generic framework to analyze spreadsheets
where functionalities such as traversing all the cells or retrieve

3In fact, this library can manipulate other kinds of documents. More details
about Apache POI can be found in http://poi.apache.org.
“https://developers.google.com/gdata/



cells information is easier than using Apache POI. Since we
believe this framework would be useful to others, we also make
it available as as Java standalone library, which can be accessed
in http://ssaapp.di.uminho.pt.

d) Detection of Smells: At this point we are able to
define specific methods to detect the necessary smells. For
each smell in the literature, we implemented a method so it
can be detected. Given the extensibility feature of our software,
adding it with new smells is very simple. For this, it is only
necessary to write a Java method implementing its detection.
The tool will then adapt itself to such a new smell. This is
very important when developing a catalog of smells, since new
smells can easily be considered and added.

e) Spectrum-based Fault Localization: The list of de-
tected smells is fed into the fault localization framework
detailed in section II-B. Prior to executing the SFL technique,
the cones for all cells are calculated, as well as output cells.
Output cells are simply given by subtracting the set of cells
inside a cone to the list of all cells. After performing the
fault localization, every cell is given a similarity score, in our
case using the Ochiai similarity coefficient, that quantifies the
likelihood of that cell being at fault. Higher coefficients are
more likely to contain a fault than lower coefficients.

f) Combining Smells with SFL: We can now explain
how all these parts are combined to produce a spreadsheet
annotated with detected faults. We use a matrix were each entry
corresponds to a cell from the spreadsheet being analyzed.
Each entry of this matrix is an integer and is initialized with the
value 0. Then, for each smelly cell detected, the corresponding
weight is added to the correct matrix entry. After all smells
have been detected, the cells that fit the threshold defined
are then sent to the SFL algorithm. This threshold can be
set to 0, meaning only the cells with the highest number of
smells detected are arguments to SFL, 1, meaning that the cell
with the maximum number of smells, plus the cells with the
maximum minus one unit, are passed, and so on. This value
is by default set to 2 since this have the best results in the
studies we conducted [10]. These cells are then passed to the
SFL algorithm and the cells it reports are incremented in the
matrix by the corresponding weight. From this matrix, the tool
colors the corresponding cells and adds the necessary notes
with the detected problems (we discuss in the next paragraph
this in more detail). A new spreadsheet file is then outputted
to the same folder where the original file was read from. In
case a spreadsheet from Google Drive has been chosen, the
path where the tool is being run is the default folder.

g) Annotating the Resulting Spreadsheet: FaultySheet
Detective computes a new spreadsheet that is a copy of
the original one, but with some cells’ background colored.
Each cell where faults are found gets its background colored
depending corresponding matrix entry. The color goes from a
green very clear to a very dark red: the greater the number of
faults, the greater red the color will be. This technique has also
been used in many other works were it is necessary to give
some feedback to the users [5], [14], [15], [16], [17]. Figure 2
illustrates the correspondence between the number of faults
detected and the color of the background a cell will get.

Users should tackle first the cells that have a more alarming
color, that is, the cells that are more red in the color scale

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2. Correspondence between the number of faults and the color a cell
gets its background.

shown. The only situation where colors can be problematic is
when the spreadsheet itself already contains colors. Although
this is a good practice to use in spreadsheets, unfortunately it
does not happen very often.

Besides the colors, a note is attached to each cell were
faults are detected . Our tool writes the smells that were
detected and the result of SFL in that cell. The user can
then try to improve the cell design by tackling each of the
issues raised. In fact, several refactorings have been proposed
to solve such issues [5], [4], [7]. Since these notes can have as
much information as necessary to improve the feedback sent
to user, we plan to integrate suggestions to the user using the
refactorings proposed. Moreover, we believe that with more
research we could rank the issues raised so the user knows
which ones should work on first. This technique of creating
some kind of helper text to give feedback to users as also been
proposed by other authors [5], [4].

B. Usage

When using the Google Drive’s variant of our tool, a
valid Google Drive account is required, as we can see in
Figure 3. On the other hand, when using analyzing local
spreadsheets, the user can browse his/her local machine. For
now, FaultySheet Detective allows the analysis of a single
spreadsheet at a time, but it can easily be adapted to run on a
folders, for example.

SmellSheet Detective

Smell Threshold 2

Smells Weights
Fault Localization [f

Login

Password
Local Spreadsheet

Google Drive Spread...

Fig. 3. FaultySheet Detective user interface.

Although the smell weights and thresholds are already
defined, users can adapt them to their needs, as shown in
Figure 4. Moreover, users can also disable the use of SFL, in
case he only wants to search for bad smells in the Spreadsheet
without searching for further dependencies using SFL.

Figure 5 shows an example of a spreadsheet that has been
analyzed by FaultySheet Detective. Note that when the user
passes the mouse over a cell that is colored by our tool, the
spreadsheet system will show the content of the corresponding
note, that is, it will show the smells detected. For now the only
result the tool is producing is a new spreadsheet copied from
the original one and colored according to the potential errors
found. We can easily compute different outputs, such as a



SmellSheet Detective

Conditional Complexity 1
Conditional Functional Dependencies 1
Duplicated Formulas 1
Empty Cell 1
Feature Envy 1
Formula Reference Blank Cells 1
Innapropriate Intimacy 1
Long Calculation Chain 1
Middle man 1
Multiple Operations 1
Multiple References 1
Pattern Finder 1
Shotgun Surgery 1
Standard Deviation 1 ‘ Back ‘
String Distance 1

Fig. 4. FaultySheet Detective user interface to manipulate weights.

report describing the possible errors found in the spreadsheets.
In fact, we plan to implement this feature.

A B = D

1 |M10-025

P

3 Income Statement - Kooker Company
4

5

6 Year 1 ™ Year 2 R
7 |Revenue 6o000d Fo400d
8

9 |Expenses

10 Salary Expense 140000 140000
11 Materials Expense 120008° 112000
12 Labor Expense 75000 azsod
13 Selling Expense apoof® 300
14 Renl Expense 3s000 3s000
15 Tax Expense 150008" 176000
16 | Total Expenses e11000° a4g800"
17

18 |NetIncome -1100d° s4z0f
19

-
Normal View Ready 4

Fig. 5. Example of a spreadsheet being analyzed by FaultySheet Detective.
Availability: FaultySheet Detective and a video demon-
strating its use are available at http://ssaapp.di.uminho.pt (Soft-
ware page).

IV. RELATED WORK

This section presents other tools that focus on spreadsheet
debugging. GoalDebug [18] is a spreadsheet debugger targeted
at end users. Whenever the computed output of a cell is
incorrect, the user can supply that cell’s expected value. The
tool generates list of change suggestions for cell formulas that,
when applied, would result in the user-specified output. Users
are expected to detect errors manually, and provide the system
with the correct output value. In our tool, the error detection
is automated by testing spreadsheets against a smell catalog.

Breviz [4] is a tool that locates inter-worksheet smells in
spreadsheets, and presents them via data flow diagrams, to im-
prove understanding. UCheck [14] tries to find inconsistencies
in spreadsheet formulas. It does not require the user to annotate
cell with additional information, as the analysis is performed
by exploiting header inference techniques.

MDSheet is a framework aimed at minimizing the occur-
rence of errors in spreadsheet through the adoption of better
spreadsheet design practices [19]. This approach, however,
does not focus on the debugging of spreadsheets.

V. CONCLUSION

This paper describes FaultySheet Detective, a tool for
automatic fault localization in spreadsheets. It uses a catalog of
fifteen spreadsheet smells to provide an indication of possible
faults, which are then fed into a well established SFL algorithm
to provide a diagnosis. Experiments show that two out of three
identified faulty cells are documented errors.

Future work includes devising intuitive visualizations to
convey the diagnostic data. Furthermore, we plan to provide fix
suggestions for detected errors and to extend the spreadsheet
smell catalog with more subjects.

REFERENCES

[1] R. Panko, “Spreadsheet errors: What we know. what we think we
can do.” Proceedings of the 2000 European Spreadsheet Risks Interest
Group (EuSpRIG), 2000.

[2] ——, “Facing the problem of spreadsheet errors,” Decision Line, 37(5),
2006.

[3] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, and E. Getzner, “On the
empirical evaluation of fault localization techniques for spreadsheets,”
in FASE’13, 2013, pp. 68-82.

[4] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and visualizing
inter-worksheet smells in spreadsheets,” in ICSE’12, 2012, pp. 441-451.

[S] ——, “Detecting code smells in spreadsheet formulas,” in /CSM. 1EEE,
2012, pp. 409-418.

[6] J.Cunha, J. P. Fernandes, J. Mendes, and J. S. Hugo Pacheco, “Towards
a Catalog of Spreadsheet Smells,” in ICCSA’12, 2012, pp. 202-216.

[7]1 S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,” in
ICSM’12, 2012, pp. 399-409.

[8] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. van Gemund, “A practical
evaluation of spectrum-based fault localization,” Journal of Systems and
Software, vol. 82, no. 11, pp. 1780-1792, 2009.

[91 M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley, August 1999.
[10] R. Abreu, J. Cunha, J. P. Fernandes, P. Martins, A. Perez, and J. Saraiva,
“Smelling faults in spreadsheets,” in ICSME ’14, 2014.

[11] J. Cunha, J. P. Fernandes, J. Mendes, P. Martins, and J. Saraiva,
“Smellsheet detective: A tool for detecting bad smells in spreadsheets,”
in VLHCC’12, 2012, pp. 243-244.

[12] R. Abreu, P. Zoeteweij, and A. van Gemund, “On the accuracy of
spectrum-based fault localization,” in TAICPART — Mutation’07), 2007,
pp- 89-98.

[13] ——, “An evaluation of similarity coefficients for software fault local-
ization,” in PRDC’06, 2006, pp. 39—46.

[14] R. Abraham and M. Erwig, “UCheck: A spreadsheet type checker for
end users.” J. Vis. Lang. Comput., vol. 18, no. 1, pp. 71-95, 2007.

[15] C. Chambers and M. Erwig, “Automatic detection of dimension errors
in spreadsheets,” J. Vis. Lang. Comput., vol. 20, no. 4, pp. 269-283,
2009.

[16] M. Erwig, “Software Engineering for Spreadsheets,” IEEE Software,
vol. 29, no. 5, pp. 25-30, 2009.

[17] R. Abraham and M. Erwig, “How to communicate unit error messages
in spreadsheets,” in WEUSE I, 2005, pp. 1-5.

[18] ——, “Goaldebug: A spreadsheet debugger for end users,” in ICSE’07,
2007, pp. 251-260.

[19] J. Cunha, J. P. Fernandes, J. Mendes, and J. Saraiva, “MDSheet: A
Framework for Model-driven Spreadsheet Engineering,” in ICSE’12,
2012, pp. 1412-1415.



