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Abstract—Spectrum-based fault localization (SFL) and dy-
namic code coverage (DCC) are two statistics-based fault lo-
calization techniques used in software fault diagnosis. Due to
their nature (statistical analysis of the coverage information), the
best technique of the two depends greatly on the system under
test code structure and size. We propose a lightweight, topology-
based analysis to quickly estimate the project under test coverage
matrix when executed, based on the source code structure. This
analysis will choose which fault localization technique to use
by creating an hierarchical model of the system. To validate
our proposed approach, an empirical evaluation was performed,
injecting faults in six real-world software projects. We have
demonstrated that using the topology-based analysis to choose
the best fault localization technique provides a better execution
time performance on average (23%) than using DCC (9%), when
comparing to SFL.
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I. INTRODUCTION

The always increasing software quality requirements, cou-
pled with current software projects’ size and complexity, de-
mand efficient automated fault localization techniques to help
developers in pinpointing failures in their systems. Spectrum-
based Fault Localization (SFL) [1], [2] is a statistics-based
fault localization technique, that uses abstraction of program
traces (program spectra) to correlate software component
activity with observed failures. SFL is amongst the most
diagnostic effective statistic-based technique [2], [3], [4].

However, in SFL, as with other statistics-based techniques,
the overhead of gathering the input information so that a
diagnostic ranking can be computed remains fairly high. This
can lead to scaling problems, particularly when debugging in
resource constrained environments.

To mitigate the scaling problems that SFL faces, we have
developed a dynamic technique, coined Dynamic Code Cov-
erage (DCC) [5]. This approach instruments the system’s
source code using a coarse detail granularity, and then decides
which components should be re-instrumented and re-tested,
based on intermediate fault localization results from executing
SFL. This iterative process will continue until the top ranked
components (i.e., the ones more likely to be faulty) are of
fine granularity. DCC has shown that, for large projects, it
can improve execution time. It can also reduce the diagnostic
report size when compared to SFL, lessening the effort needed

by the developers to inspect the automated fault localization
output. However, for small software projects, DCC is not that
effective, even showing worse results than SFL [5].

Both SFL and DCC’s diagnostic efficiency is greatly de-
pendent on the coverage information per test case (the best is
that test cases fouch different parts of the program). In this
paper, we propose a technique that is able to inspect a certain
software project and assert which fault localization approach
should be used, based on the system’s topology. Note that
such model may even be used to decide not to use a fault
localization technique at all. To the best of our knowledge,
our topology-based analysis has not been described before.

In our empirical evaluation, we have validated our approach
by performing the fault localization task on faulty versions
of six different real-world open-source software projects. We
have demonstrated that using our topology-based analysis
to decide which fault localization technique should be used
provides a better average execution time performance (23%,
0=0.26), than using DCC (9%, 0=0.49), when compared with
SFL.

II. MOTIVATION

Automatic fault localization techniques aid developers in
pinpointing the root cause of software failures. Amongst
the most diagnostic effective techniques is Spectrum-based
Fault Localization (SFL), a statistical technique that exploits
coverage information from passed an failed system runs [2],
[3], [4]. A passed run is a program execution that is completed
correctly, and a failed run is an execution where an error was
detected [2]. The criteria for determining whether a run has
passed or failed can be from a variety of different sources,
namely test case results and program assertions, among others.
The information gathered from these runs is their program
spectra.

A program spectrum is a characterization of a program’s
execution on a dataset [6]. This collection of data, gathered
at runtime, provides a view on the dynamic behavior of a
program. The data consists of counters or flags for each
software component. In order to obtain information about
which components were covered in each execution, the pro-
gram’s source code needs to be instrumented, similarly to code
coverage tools [7]. This instrumentation will monitor each
component and register those that were executed. Components



can be of several detail granularities, such as classes, methods,
and lines of code.

The program spectra of N runs constitutes a binary N x M
matrix A, where M corresponds to the instrumented compo-
nents of the program. Information of passed and failed runs is
gathered in an N-length vector e, called the error vector. The
pair (A, e) serves as input for the SFL technique, as seen in
Figure 1.
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Fig. 1. Input to SFL.

With this input, fault localization consists in identifying
what columns of the matrix A resemble the vector e the
most. For that, several different similarity coefficients can be
used [8]. One of the most effective is the Ochiai coefficient [1],
used in the molecular biology domain:

n11(j)
(n11(J) + no1(4)) x (n11(4) + n10(4))

where np,(j) is the number of runs in which the component
7 has been touched during execution (p = 1) or not touched
during execution (p = 0), and where the runs failed (¢ = 1)
or passed (¢ = 0). For instance, n11(j) counts the number of
times component j has been involved in failed executions,
whereas n10(j) counts the number of times component j
has been involved in passed executions. Formally, n,,(j) is
defined as
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SFL can be used with program spectra of several different
granularities. However, it is most commonly used at the
line of code (LOC) level. Using coarser granularities would
be difficult for programmers to investigate if a given fault
hypothesis generated by SFL was, in fact, faulty. This can lead
to scalability issues, as every LOC has to be instrumented for
the program spectra to be gathered.

Instrumentation can hit execution time by as much as 50%
in code coverage tools that use similar instrumentation tech-
niques to gather information about the program execution [7].
As such, fault localization techniques that use program spec-
tra may be impractical for large, real-world, and resource-
constrained projects that contain hundreds of thousands of
LOCs.

In order to solve the potential scaling problem that statistics-
based fault localization techniques have, we have proposed a
dynamic approach, called Dynamic Code Coverage (DCC) [5].
This technique, which can be seen in Algorithm 1, automat-
ically adjusts the detail granularity per software component.

Algorithm 1 Dynamic Code Coverage.

1: procedure DCC(System, TestSuite,
Initial Granularity, Final Granularity)
R+ o
F < System
T <« TestSuite
G « Initial Granularity
repeat
INSTRUMENT(F, G)
(A,e) + RUNTESTS(T)
C + SFL(4,¢)
F < FILTER(C)
R < UPDATEREPORT(R, F)
T < NEXTTESTS(TestSuite, A, F)
G < NEXTGRANULARITY(F)
until ISFINALGRANULARITY(F,
FinalGranularity)
15: return R
16: end procedure
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First, our approach instruments the source code using a desired
coarse granularity (e.g., package level in Java) and the fault
localization is executed by performing the SFL technique.
Then, it is decided which components are zoomed-in based
on the intermediate results of the of the fault localization
technique. With zooming-in we mean changing the granularity
of the instrumentation on a certain component to the next
detail level (e.g., in Java, for instance, instrument classes, then
methods, and finally statements). This zoom-in can be done in
different ways, with the use of filters. See [5] for examples of
filtering methods.

After deciding which components will be re-instrumented,
the fault localization procedure is executed again, by running
the tests that touch the re-instrumented components. This pro-
cess of performing SFL, filtering the results, and re-instrument
the filtered components will repeat itself until the desired final
granularity is reached.

DCC, as an iterative technique, is aimed at improving
the execution time of the fault localization procedure, and
shows a substantial reduction of the execution time (27% on
average) and the diagnostic report size (67% on average),
when compared with SFL [5]. However, for some projects,
the task of re-instrumenting and re-testing may consume more
time than performing a single iteration with a fine-grained
instrumentation throughout the entire project. This can happen
in projects where each test covers a large portion of the code,
either due to having an unbalanced code topology, or having
a relatively small codebase. In both of these instances, the
resulting program spectra matrix will be rather dense, therefore
many software components will have to be zoomed-in.

A technique able to analyze in a lightweight manner the
projects under test, and assert if a project’s structure is not
suited for DCC would be of crucial importance. It would serve
as a decision support technique to whether one should employ



SFL or DCC when performing the fault localization procedure
on a given project. Aside from its use in fault diagnosis, this
technique would also be useful in other instances of tools that
depend on either the project under test coverage information or
code structure. One example is with automated test generation
tools. This way, these tools could have a fast method of
knowing then to stop generating tests, without having to run
the entire test suite.

III. TOPOLOGY MODEL

As detailed in the previous section, if a developer is to use
the best diagnostic and time effective fault localization tech-
nique to debug his software application of those considered,
some analysis must be done beforehand. In this section, we
describe our analysis methodology for quickly estimating a
software project’s execution coverage density by inspecting
its topology.

This analysis is intended to provide a general and coarse
overview of a project’s execution based on it’s source code,
in a fast and lightweight manner. It extrapolates information
based on how a program is structured. As such, programming
paradigms that enforce a certain hierarchy (common through-
out different projects) such as object-oriented programming
(OOP), is needed. We use this hierarchy to construct a model
of the system, facilitating its subsequent analysis. Test cases
throughout the project should be also identifiable with minimal
static analysis. Throughout this paper, we will be using the
OOP hierarchy of Java (in descending order of granularity:
packages, classes, methods and statements) for all the exam-
ples of how our model is constructed and processed.

As a first step, a tree model of the system topology is
constructed. This tree’s root node symbolizes the project, with
all the other nodes being either packages, classes or methods.
Method nodes are the lowest granularity nodes, aimed at
speeding up the analysis. One thing to note is that, because we
are not analyzing the statements of a method, local classes (i.e.,
classes that are defined inside methods) also do not show up
in the tree. A class node can also have an annotation stating
that a certain class is a test case. This way, test cases are
easily identifiable. The edges represent relations (e.g., classes
are connected to their respective package).

After the topology tree is constructed, its analysis can be
performed. For that we use a score function S, defined as
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The first two terms of the score function S are related to
the system’s coverage matrix density: o,,/. and o, are the
standard deviation of methods per class and of classes per
package, and N,, and N, are the number of methods and
classes, respectively. What both of these terms are estimating
is if the topology tree exhibits a balanced structure, or if the
nodes show a high variance of children. For example, if a
certain package contains more classes than other packages, one
can assume that the contents of this package are more likely
to be touched by an execution than the ones in a package with

S =

less classes. Similarly, if we increase the detail level, the same
can be said for the number of class methods. Both terms will
tend to zero if the tree is balanced.

The last two terms of the score function S estimate the
system’s coverage matrix size. [V; is the number of test cases.
Coefficients C' and T' are the weights that the number of
classes and tests have in the score function, and they can be
adjusted according to a project’s topology, and determine the
impact that each term has in the overall score function. Being
inverse exponential functions, both of these terms exhibit a
high value if a system contains few classes or tests, but this
value rapidly decreases as the number of classes and tests
Srows.

The result of this score function S can, then, be regarded
as a coarse extrapolation of the attributes of the subject’s
coverage matrix. If the result of this function is a value close
to zero, this means that the matrix should be sparse and fairly
big in size. Otherwise, if the value is not close to zero, this
means that the matrix is small or/and rather dense.

The score function S can be used as a decision support
mechanism. If we revisit our fault localization example from
the previous section, we can use this analysis to support the
use of DCC or SFL to debug a certain project. For that, one
can use:

DCC
SFL

meaning that the best fault localization for a given project is
DCC if its score is below a given threshold F, which can
also be adjusted, and SFL if the score is above the specified
threshold. Note that the decision above can be refined to decide
not to use any fault localization technique.

if S<E

FaultLocalization = { .
otherwise

IV. EMPIRICAL EVALUATION

In this section, we evaluate the validity and performance
of our topology-based analysis model in its application to
statistics-based fault localization. First, we introduce the pro-
grams under analysis and the evaluation metrics. Then, we
discuss the empirical results.

A. Experimental Setup

For our empirical study, six subjects written in Java were
considered:

e NanoxML' — a small XML parser.

e Org.jacoco.report — report generation module for
the JaCoCo? code coverage library.

e Xstream® — an object serialization library.

o JGAP* — a genetic algorithms library.

e XML-Security — a component library implementing
XML signature and encryption standards. This library is
part of the Apache Santuario® project.

INanoXML - http://devkix.com/nanoxml.php
2JaCoCo — http://www.eclemma.org/jacoco/index.html
3Xstream — http://xstream.codehaus.org/

4JGAP - http://jgap.sourceforge.net/

5 Apache Santuario — http://santuario.apache.org/



o JMeter® — a desktop application designed to load test
functional behavior and measure performance of web
applications.

The project details of each subject are in Table I. The LOC
count information was gathered using the metrics calculation
and dependency analyzer plugin for Eclipse Metrics’. Test
count and coverage percentage were collected with the Java

code coverage plugin for Eclipse Ec1Emma®.

TABLE I
EXPERIMENTAL SUBJECTS.

Subject Version | LOCs (M) | Test Cases | Coverage
NanoXML 2.2.6 5393 8 53.2%
org.jacoco.report 0.5.5 5979 33 97.2%
Xstream 1.4.3 35944 174 84.8%
JGAP 3.6.2 48590 88 67.1%
XML-Security 1.5.0 60946 460 59.8%
JMeter 2.6 127359 534 34.2%

To assess the efficiency and effectiveness of our model the
following experiments were performed, using fifteen faulty
versions per subject program. As the subject programs are
bug-free, we injected common mistakes in the programs — one
fault in each of the fifteen versions, and executed:

e Fault localization with SFL.

o Fault localization with DCC.

« The topology analysis model, followed by the fault lo-
calization technique that the model considers appropriate
based on the subject’s score.

For each execution, we have gathered the total execution
time and the program spectra matrix density. After some
training, for this set of experimental subjects, we have used
C = 100 and T" = 50 in our model. The model decides
employing DCC over SFL when the score function is §' < 1.0.

The experiments were run on a 2.7 GHz Intel Core i7
MacBook Pro with 4 GB of RAM, running OSX Lion.

B. Experimental Results

Figures 2 to 7 summarize the overall execution time out-
comes for all experimental subjects. It is worth to note that
the results shown are gathered by running the entire fault
localization and topology analysis experiments detailed in the
previous section, and do not pertain only to the instrumentation
overhead.

The first two subjects to be analyzed were NanoXML and
org.jacoco.report, whose experimental results can be
seen in Figures 2 and 3. In both projects, the SFL execution
is faster than employing DCC. In fact, the DCC shows an ex-
ecution time increase of 50% on average (0=0.35). According
to Table I, both projects show a relatively small codebase. At
the same time, the amount of test cases in both is fairly low.
This kind of projects, small in size and with a low amount
of test cases, but with a coverage of over 50% are not fit
for use with regular DCC. Their generated program spectra

6JMeter — http://jmeter.apache.org/
"Metrics — http://metrics.sourceforge.net/
8EcIEmma — http://www.eclemma.org/
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matrices, detailed in Section II, will be rather dense. Because
of this, many components would have similar coefficients,
rendering the filtering operation ineffective: either discarding
many different components, or keeping a lot of components
to be re-instrumented and re-tested. The best fault localization
technique for NanoXML and org. jacoco.report is, in
fact, SFL.

As a result of having a small codebase, both NanoXML
and org. jacoco.report are scored above the exploration
threshold by the topology-based analysis. This means that
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the fault localization technique chosen by our analysis to be
performed is SFL — the best fault localization technique of
those considered. Our lightweight analysis, when compared to
running just SFL, shows a 3% increase in execution time on
average (0=0.02).

In the other test subjects, Xstream (Figure 4), JGAP
(Figure 5), XML-Security (Figure 6) and JMeter (Fig-
ure 7), the fault localization with DCC is faster than using
SFL by 39% on average (0=0.20). This is due to the fact
that the generated program spectra matrices are sparser. Also,

as programs grow in size, the overhead of a fine-grained
instrumentation (used in methodologies such as SFL) is much
more noticeable. In this kind of sizable projects (see project
information in Table I), and if the matrix is sparse enough, it
is preferable to re-run some of the tests, than to instrument
every LOC at the start of the fault localization process.

These four subjects have all scored lower than the explo-
ration threshold by the topology-based analysis. Thus, the fault
localization technique used by the analysis in these instances
is DCC. Our analysis, combined with the fault localization,
shows a 5% increase in execution time on average (0=0.05).

Overall, when compared with SFL, using the topology-
based analysis to choose the best fault localization technique
for each subject provides a better execution time performance
(23% on average, 0=0.26) than pure DCC (9% on average,
0=0.49).

TABLE I
PROGRAM SPECTRA MATRIX DENSITIES.

Subject Density o
NanoXML 61% 0.094
org.jacoco.report 15% 0.008
Xstream 12% 0.007
JGAP 7% 0.001
XML-Security 7% 0.003
JMeter 2% 0.001

The other metric that was gathered in these experiments was
the program spectra matrix density. Table II shows the average
matrix densities for all test subjects. As was shown previously,
the two subjects that our topology-based analysis considers un-
fit for DCC are NanoXML and org. jacoco.report. This
was supported by the DCC execution times in our experiments,
which under-performed when compared with SFL. These two
subjects are those whose matrices were of higher density out of
all considered subjects. Thus, our analysis correctly estimated
the application behavior during execution by inspecting their
source code’s topology.

It is worth noting that the main threat to the validity
of this empirical evaluation is related to the injected faults.
These injected faults, despite being fifteen in total for each
experimental subject, may not represent the entire conceivable
software fault spectrum.

V. RELATED WORK

Statistics-based fault localization techniques, as stated
above, use an abstraction of program traces, also known as
program spectra, to find a statistical relationship between soft-
ware components and observed failures. Well-known examples
of such approaches are the Tarantula tool by Jones, Harrold,
and Stasko [9], the Nearest Neighbor technique by Renieris
and Reiss [10], the Sober tool by Lui, Yan, Fei, Han, and Mid-
kiff [3], the work of Liu and Hand [11], CrossTab by Wong,
Wei, Qi, and Zap [4], the Cooperative Bug Isolation (CBI)
by Liblit and his colleagues [12], [13], [14], [15], the Time
Will Tell approach by Yilmaz, Paradkar, and Williams [16],
HOLMES by Chilimbi et al. [17], and MKBC by Xu, Chan,



Zhang, Tse, and Li [18]. Although differing in the way they
derive the statistical fault ranking, all techniques are based
on measuring program spectra. Note that this list is by no
means exhaustive. However, none of these employ a dynamic
approach to fault localization, such as DCC. Moreover, to our
knowledge, there is no toolset or approach that uses more than
one different fault localization technique, selecting which to
use based on source code topology analysis.

VI. CONCLUSIONS & FUTURE WORK

We have shown that current statistics-based automated
software fault localization techniques, namely Spectrum-based
Fault Localization (SFL) and Dynamic Code Coverage (DCC),
still have some inefficiencies that need to be addressed. The
former can suffer from scalability issues, since the entire
system under test must be instrumented for the diagnosis to
be performed. The latter reduces the instrumentation needed to
perform the fault localization task, however, its performance
can drop if its coverage matrix is rather dense, generally due
to an unbalanced and/or small codebase topology. As a result,
and according to how a certain system is structured, the best
fault localization technique to be used can vary.

A topology-based analysis method was presented with the
aim of supporting the decision of whether employing SFL or
DCC as the fault localization technique for a certain software
application. This analysis method creates a hierarchical model
of the system under test and inspects it with the use of a
score function. This function can be regarded as a coarse
extrapolation of the coverage per test case, and is used as
a decision support mechanism by comparing its outcome with
a fixed threshold. As such, this analysis estimates a system’s
execution coverage density by examining its topology. In our
empirical evaluation, we have demonstrated that using the
topology-based analysis to choose the best fault localization
technique provides a better execution time performance on
average (23%, 0=0.26) than using DCC (9%, 0=0.49), when
comparing to SFL.

As for future work, we intend to investigate the use of this
topology-based analysis within other problems that depend on
code coverage information or code structure. Its use in test
generation tools, as a method of knowing when to stop the
test generation without running the entire test suite may be of
key importance.
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